Morphological, Rheological, and Mechanical Properties of Polyamide 6/Polypropylene Blends Compatibilized by Electron-Beam Irradiation in the Presence of a Reactive Agent
نویسندگان
چکیده
An immiscible polyamide 6 (PA6)/polypropylene (PP) blend was compatibilized by electron-beam irradiation in the presence of reactive agent. Glycidyl methacrylate (GMA) was chosen as a reactive agent for interfacial cross-copolymerization between dispersed PP and continuous PA6 phases initiated by electron-beam irradiation. The PA6/PP (80/20) mixture containing GMA was prepared using a twin-screw extruder, and then exposed to an electron-beam at various doses at room temperature to produce compatibilized PA6/PP blends. The morphological, rheological, and mechanical properties of blends produced were investigated. Morphology analysis revealed that the diameter of PP particles dispersed in PA6 matrix was decreased with increased irradiation dose and interfacial adhesion increased due to high surface area of treated PP particles. Complex viscosities (η*) and storage moduli (G') of blends increased with increasing irradiation dose and were higher than those of PA6 and PP. The complex viscosity of the blend irradiated at 200 kGy was 64 and 8 times higher than PA6 and PP, respectively. The elongation at break of blend irradiated less than 100 kGy was about twice that of PA6. Electron beam treatment improved the compatibility at the interface between PA6 and PP matrix in the presence of GMA.
منابع مشابه
Electron beam irradiation method to change polypropylene application: Rheology and thermomechanical properties
Irradiation of polymers is one of the most effective and economical methods for modifying their properties and for changing their applications. In this study, an extrusion grade polypropylene (PP) was treated by electron beam irradiation to produce a PP suitable for injection molding. Irradiation was carried out at different doses (0-80 kGy) under atmosphere air and at ambient temperature. Melt...
متن کاملProperties of Polymers after Radiation Cross-linking
Radiation processing involves the use of natural or manmade sources of high energy radiation on an industrial scale. The principle of radiation processing is the ability of high energy radiation to produce reactive cations, anions and free radicals in materials. The industrial applications of the radiation processing of plastics and composites include polymerization, cross-linking, degradation ...
متن کاملThe influence of branching efficiency on the rheology and morphology of melt state long chain branched polypropylene/polybutene-1 blends
In this study, the compatibility of the blends of polypropylene (PP) and polybutene-1(PB-1) homopolymer before and after long chain branching process were studied. The blends were prepared and long-chain branched directly via reactive extrusion process in presence of free radical initiator and trimethylolpropane tri methacrylate (TMPTMA) poly functional monomer. The optimum percentage of TMPTMA...
متن کاملPolypropylene /Polystyrene in situ nano reinforced blends fiber: Morphology and properties
Polypropylene / polystyrene blends containing montmorillonite (MMT) were prepared using a twin screw extruder followed by fiber spinning. The melt intercalation of PP and PS alloys was carried out in the presence of a compatibilizer such as maleic anhydride-g-polypropylene (MPP). The crystallization morphology, thermal behaviors and mechanical properties of polypropylene/polystyrene (PP/PS) nan...
متن کاملPolypropylene /Polystyrene in situ nano reinforced blends fiber: Morphology and properties
Polypropylene / polystyrene blends containing montmorillonite (MMT) were prepared using a twin screw extruder followed by fiber spinning. The melt intercalation of PP and PS alloys was carried out in the presence of a compatibilizer such as maleic anhydride-g-polypropylene (MPP). The crystallization morphology, thermal behaviors and mechanical properties of polypropylene/polystyrene (PP/PS) nan...
متن کامل